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SUMMARY

The longitudinal frequency response of a large flexible swept-wing
alrplane, as determined from its measured response to elevator pulses,
is presented over the operating Mach number range at altitudes from 15,000
to 35,000 feet. Response quantities for the nose, center of gravity, wing
tip, and tail are shown for frequencies from the airplane short-period
mode to the fuselage first-bending mode.

Comparisons are made between the measured responses and responses
predicted by dynamical analyses with up to three structural degrees of
freedom. The forms of transfer functions needed to simulate the response
over several frequency bands are shown. The dynamic response measured in
flight is interpreted in terms of lines of low response, and comparisons
are made with predicted lines of low response and node lines predicted by
free-free analysis and measured in ground vibration tests.

INTRODUCTION

The mess distribution and structural flexiblility of some recent
high-aspect-ratio swept-wing bombers and transports has resulted in alr-
planes with relatively low frequency structural modes. Consequently, the
response of these airplanes to disturbances such as control inputs and
gust loads consists of large structural deflections as well as motions
of the airplene as a whole. Various parts of the alrplane, then, are
subjected to widely different accelerations. These accelerations not
only affect the local structural stress, but also influence the operation
of mechanical and electronic equipment. When the airplane is equipped
with an automatic control system, the local dynamic response to control
motion is of particular significance because structural vibratlon signals
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which are fed into the system by pilckups (accelerometers, rate gyros, ete,)
mey either csuse the system to become unsteble or limit the gain allowasble
for system stability (refs. 1, 2, and 3).

In order to provide informastion on dynamic characteristics of Fflexible
eirplanes, the NACA has been evaluating measured and predicted dynamic
responses of a Boeing B-47 airplane to control surface motions. The
dynemic response at frequencies below the structural mode frequencies
has been reported in references 1, 4, and 5. Also, a limited amount of
measured responses at structural mode frequencies was presented in these
reports, but the analysis was limlted to frequencies below the natural
frequencies of structural modes. In the present report, measured dynamlc
responses to elevator control at structural mode frequencies are presented
for a wide range of flight conditions, and an analysis is developed which
includes three structural modes, wing first bending, wing first torsionm,
and fuselage first bending. Other analyses including structural modes
have been presented in references 6, 7, and 8.

In the first part of the report, the measured responses of widely
separated polnts on the airplane are examined for effects of altitude,
Mach number, and dynamic pressure. In the second part, equations of
motion are developed for three structural degrees of freedom and two air-
plane degrees of freedom. Finally, comparisons are made between measured
and predicted structural response characteristics and results are inter-
preted to locate optimum points for automatic control system pickups.

Data used in this report were obtained from flight tests conducted
at the Hlgh Speed Flight Station of the NACA and the analysis and reduc-
tion of date was a cooperative effort of HSFS and Ames Aeronsutical
Laboratory.

Symbols used in this report are defined in Appendix A.
TEST EQUIPMENT

The test airplane was a Boeing B-4TA with General Electric JLT-GE-23
turbojets and with wing vortex generators as shown in figure 1. Wing
deflections were measured by an optigraph mounted on top of the fuselage
which recorded the movement of 100-watt target lights. Elevator angle
was measured by an NACA resistance-type control-position indicator. The
pitching velocity at center of gravity was measured by a magnetically
damped NACA pitch turnmeter, the acceleration at the center of gravity
end teil by NACA air-damped accelerometers, and the acceleration at the
nose and wing tip by Statham linear accelerometers. The locations of the
instruments used in this report are indicated in figure 2.
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MEASURED FREQUENCY RESPONSE

Measured frequency responses were selected which would define the
complete motion of the alrplane over a wide range of flight conditions.
The measured quantities are pitching velocity at the center of gravity,
acceleration at the center of gravity, acceleration at the nose, accel-
eration at the wing tip, and acceleration at the tail. Although these
few points are not sufficient to define structural deformations in detail,
the most significant deflections which occur in the frequency range of
interest are of the first-bending type and, hence, the principal deflec-
tions of in-between points can be approximated by use of the assumed
cantilever modes which are introduced later in the analysis. The flight
conditions covered are plotted in figure 3 and are listed in table I.

Frequency response data were obtained by the "pulse technique®™ which
is described in detail in reference L. Briefly, in this method, the pilot
applies a pulse force to the controls and the resulting motions are
recorded. The time histories of the elevator angle input and the output
response quantity are transformed to frequency form by the Fourier inte-
gral. Corrections are made for the dynamic response of instruments and
frequency response is cut off at frequencies where the level falls below
values required for accurate results.

In order to document the response and to show how the response varies
with different parameters held constant, frequency responses are plotted
with altitude held constant in figures L, 5, and 6, with the aeroelastic
perameter q/B held constant in figure 7, and with Mach number held
constant in figure 8. Discussion of these results follows.

Frequency Response At Constant Altitude

The frequency response is presented for three altitudes, 15,000 feet
in figure k4, 25,000 feet in figure 5, and 35,000 feet in Ffigure 6. Cer-
tain trends are apparent from these flgures. The pesk of the short-period
mode at a frequency from 1 to 4 radians per second increases in amplitude
and occurs at higher frequencies as Mach number is Iincreased. This trend
is explained in reference k.

The peak in the acceleration responses due to the wing first-bending
mode (approximately 9 radlans/sec), which is most apparent in figures L4(d),
5(d), and 6(d), decreases with increasing Mach number. Also, the valley
or dip in the response which follows the short-period mode pesk shifte to
higher frequencles as Mach number is increased.

The response 1s very complex at frequencles higher than the wing
first-bending mode, partly because of lnaccuracies in the data by the pulse
technique and partly because of many vibrations, insignificant for present
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purposes, which are plcked up by the accelerometers. However, the peaks
which reach falrly high amplitudes are consldered to be accurate indica-
tions of structural modes and only peeks which rise above 10g's per radian
on acceleration responses will be considered to be significant here.

The next significant peak appears at frequencies from 14 to 17 radiens
per second. On the basis of ground vibration tests (ref. 9) and analysis
(ref. 10), this mode is believed to be of & wing second-bending type
coupled with body trensletion and pitech.

A very definite high pesk is in evidence on all of the responses near
a frequency of 30 radians per second, which, according to ground vibration
tests, 1s a mode consisting primerily of fuselage first bending. Unfor-
tunately, the frequency content of the pulse inputs was not high enough
to define this peak clearly in every case, but the peak amplitudes appear
to0 increase with Mach number and tend to become less severe as altitude is
increased. : : - :

A smgll blip or side band occurs in many cases at a high level of
amplitude from 20 to 25 radiens per second on the acceleration responses
of the wing tip. This 1is belleved to be due to the wing first-torsion
mode as indicated by ground vibration tests and analysis. Because of the
very close proximity of the wing first-torsion mode to the fuselage first-
bending mode it is difficult to note any separate effects.

Frequency Response With Aeroelastic Parameter q/B Constant

Frequency responses with aeroelastic parameter, q/B, equal to 280
pounds per square foot are plotted in figure T for the range of test
altitudes as indicated in figure 3. All of the responses fall fairly
close together in both smplitude and phase. The differences which do
occur, near the short-period mode frequency, are explained by the pseudo-
static theory (refs. 1 and 4) when differences in welght are included.

The results in reference 1 show that the steady-state gain of the ratio

of acceleration to elevator angle and the damping retio of the short-
period mode both decrease with an increase in altitude at constant gq/B.
These trends have opposite effects on the amplitude of the frequency
response curves and tend to cancel each other when the frequency is raised
to the short-period mode frequency. However, with the exception of the
steady-state gain, it appears that the response could be considered essen-
tially unchanged for some practical purposes when q/B is held constant
and other parameters are varied. : -
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Frequency Response At Constant Mach Number

Curves for a Mach number of 0.7 (fig. 3) are plotted in Ffigure 8.
As altitude is decreased at constant Mach number, the aeroelastic param-
eter g/B increases and,therefore, the frequency of the short-period
mode peek and the general level of the amplitudes increase.

The peak of the wing first-bending mode at a frequency of 8 to 9
radisns per second which is seen most clearly in figure 8(d) tends to
disappear as q/B is lncreased. Although peaks are not well defined
at higher frequencies, an opposite trend appears for the modes at 16
radians per second and 30 radians per second. These peaks tend to
increase with q/B. It should be noted here that in forced oseillation
tests the height of the pesk in the frequency response depends on the
manney in which the driving force is coupled to the mode as well as on
the damping of the unforced mode itself. Hence, in the interpretation
of pesk-amplitude trends, consideration should be given to changes in
the coupling of the modes with the forcing as well as to chenges in
aerodynamic damping and spring forces.

ANAT.YTTCAL METHODS FOR PREDICTION OF DYNAMIC RESPONSE

In the previous section, measured dynamic responses of the airplane
were presented to document the response and to show the effects of various
parameters. Of course, it is desirable to be able toc predict these
response characteristics for use in rational design of the alirplane and
its control system. In the following section, methods of analysis
including structural degrees of freedom are developed.

Equations of Motion

Equations of motion of a flexible airplane for Efrequencies below the
structural mode frequencies were developed in reference k. Also, equations
of motion including structural modes have been presented In references 6,
T, and 8. In the analysis here, the equations are developed for two air-
plane degrees of freedom and three structural degrees of freedom in a form
which lends itself to digital machine compubing or hand calculations. 'The
equations of motion of the alrplane may be simply stated by ILagrange's
eguation:

d KE , JFE
at aé‘i * qu - Qi (l)
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where KE 1s the kinetic energy, PE +the potential energy, 9 the
generalized coordinates, and Qi the generalized forces. To completely
describe the complex dynamic system of & flexible airplane, an infinite
number of coordinates (qj) ere needed. However, in most practical prob-
lems, the motions of the airplane occur within a finite frequency range,
and these motlons can be adequately described with a finite number of
coordinates. The trick is to select the minimum number of coordinates
which are needed for the frequency range of interest.

Selectlon of coordinates.- The mode of deformetion of the structure
at en instant of time represents a condition in which the structurasl
spring forces are in equllibrium with the combined forces of all the
loads. The individual loads, which inelude inertlal, aerodynamic, and
structural damping loads due to motions of the airplane a8 & whole and
structural deflections, vary in accordance with the frequency range con-
gidered. At low frequencies, loads due to motlons of the airplane as a
vhole are of primary importance, while at higher frequencles, loads due
to motlion of the structure are of primary importance. Since the total
deflection results from various combinations of the individual loads, an
insight to the coordinates needed. to define the total deflection is galned
1f the deflections due to the individusl loads are known.

To study the low-frequency range, pseudostatic deformations of the
wing resulting from loads due to o, é n, and 8 were calculated through
use of aerodynamic and structural influence coefficients (see Appendixes B
and C). The deflectlon of the wing from the reference plene shown in fig-
ure 9 is presented in figure 10 in components of hending of the elastic
axis (38-percent chord) and streamwise twist. All of the curves are of
the wing first-bending type with various amounts of twist of the wing
first-torsion type. Although fuselage bending is not shown on the figure,
it occurs in various amounts in the same directlon as the wing bhending.

At structural mode frequencies, the inertial forces due to structural
motion are apt to be of greatest importence. The individual effect of
these inertiel forces was eveluated by calculating the wvacuum vibration
modes of the alrplane as described in Appendix B. These modes are plotted
about the space axes in figure 11, but the deflectlons will be discussed
a8 viewed from the deflection reference plane on the fuselage.

The dominant mode 1s of the wing first-bending mode type. The first
subdominant mode is primarily wing first torsion with some wing second
bending. The second subdominent mode is primarily fuselage bending with
a curve of wing first-bending type in the wing. At this frequency it is
noted that there is little or no bending of the inboard portion of the
wing which indicates a component of wing second bending is present.

The individual deformatlions In figures 10 and 11 indicate the
principle deformatlons to be expected for fregquencies up to 25 redians
per second. In order to satisfy both the conditions of the pseudostatic
frequency range (various amounts of wing torsion and fuselsge bending
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oceurring with wing first bending) and the structural mode frequency range
(various amounts of fuselage bending with different types of wing bending
curves), it 1s necessary to breek up the deflection curves into components.
This was done by selecting wing first bending, fuselage first bending, and
wing first torsion for degrees of freedom (fig. 12 and table II). Although
wing second bending 1s evident in some deflections, it was neglected to
simplify the analysis. It should be noted that the deflection coordinates
in figure 12 are deflections relative to the deflectlon reference plane in
figure 9 which represent the structural deflections which an observer would
see from the rigld airplane center-of-gravity location. Also, coordinates
of displacement of rigid alrplane center-of-gravity location and pitch
angle of the deflection reference plane were included to teke into accoumt
motions of the ailrplane as a whole.

There are other combinations of coordinates which could be used to
describe these motions, but the component deflection breakdown used here
has meny advantages. The equations are put in a form which allows dlrect
application of the pseudostatic prineiple in any of the structural degrees
of freedom. The calculation of generalized forces is simplified. The
structural degrees of freedom correspond to deflections seen by an observer
on the airplane and, hence, correspond to the optigraph measurements.

APPLICATTION OF LAGRANGE'S EQUATION

By means of equation (1) and coordinates, displacement of center of
gravity (ch), pitch angle of center of gravity (6), wing first bending
(y), fuselage first bending (h), and wing first torsion (1)}, the equations
of motion as derived 1n Appendix C are:
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Symbols are deflned in Appendix A. Aerodynamic coefficient terms
(e.g., ZCLmiai) were evaluasted from serodynamic dinfluence coefficients

which were based on steady-state lifting line theory. The aerodynamic
influence coefficients were further modified to include weighting terms
so that the summations performed are quadrature solutions of the integral
of the product of the spanwise 1ift function and the deflection function.

Equation (2) may be solved for trensfer functions Z.g/3, 6/5, /8,
h/8, and 1/5. From these solutions the motion of any point on the air-
plane may be determined. The acceleration at a point (i) for example is
given by:

ng 0% (Zeg L 0. . T, b l)
_8-—§._2_<'Z_5_+x16+815+b16+018 (3)

Equation (2) may be easlily extended to include more degrees of
freedom. Coordinates should be selected which are normal or nearly nor-
mal to avold ill-conditioned equations. In other words, the cross terms
such as ZEmjaqec; should be approximately zero. If a suitable digital
computing machine is avallable, then a large number of normal coordinates
could be included in the equations of motion. However, for preliminary
design use end for interpretation of the dynamic response, the simplifi-
cations attendant with a few degrees of freedom are desirable.

The adequacy of the degrees of freedom selected can always be
checked at a given frequency by comparing the deflections predicted by
the equations with the deflections computed from the applied loads
(Appendix C).

The Pseudostatic Method

When only the dynemic response below structural mode frequencies is
needed, equation (2) may be simplified by eliminating terms in D2 and D
which occur with the variables y, h, and 1. This assumes that the iner-
tial and damping forces arising from structural motion are negligible.
This is sometimes called the pseudostatic method because only the spring
terms of the structural modes are included, but all of the dynamic effects
of the rigid body degrees of freedom are included. Equation (2) may be
written in matrix form as follows:

o]

- CLS

Cmg
=4{ o0 (% (1)

-CLG
0]

[N
~ pO'd © 0
(1}
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in vwhich the elements of [Cij} are quadratic polynomials in D, that is,

Cr,e C
Cqq = <%1M + -%%> D? +-—5§,D. Equation (4) may be partitioned into

v
equations:
Cy1 C1o | b Zeg C Cr; CL ¥ ~Cy,
N e A B 4 I B (5)
Coy Coo 2] -Cmy —th -sz 1 cms
and
- - Ty o)
Cay Caz Kiwng my 8+ Y ZCLliai y\ 0
ZCLw1ai
Z
C41 Cao { CE} ¥ 0 Klwnb22m1b12+ 0 _ <h ) = ﬁ'CL5> 5
g chhibi
2
Cgy Cs2 ZCLyici 0 Klwncazmici + \ZJ \ 0
e . L ECL'Lici -

(6)

In the pseudostatic method, equation (6) is solved for {;}-and
1

substituted in equation (5). The resulting equation then is only a func-
tion of Zqg, 6, and 8. The important condition in using equations (5)

and (6) for pseudostatic calculations is that

Ky Wng=omy aq % ) 0Ly, 81
ZCLy.ia.i
0 K1y, “Ems by %+ I £0 (7)
ZCr. D
L, P1
):CLy cq 0 KleCZZmic12+
i
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for this is the condition for existence of the inversion used in solving
equation (6) for {g} . The determinant, equation (7), becomes very small
1

and epproaches zero if two similar modes are selected as degrees of free-
dom. The best conditioning of equation (6) is obtained when modes are
selected which are normal (Zmiaici = 0). The pseudostatic analysis, as
used in reference U4, used each of the control points on the wing as a sep-
arate degree of freedom. All of these degrees of freedom could be used
in the dynamical analysis by expanding equations (2) to include more
degrees of freedom, but this procedure is ususlly impractical.

Pseudostatic method techniques can also be applied to the equations
which include dynamic effects of structural modes. In these cases, the
modes in the frequency range of interest are included as dynamic degrees
of freedom, and the higher frequency modes as pseudostatic. For example,
if the frequency response were needed through the wing first-bending mode
frequency, then only terms in D2 and D assoclated with variables h
and 7 would be neglected.

COMPARISON OF MEASURED AND PREDICTED RESPONSES

In the previous two sections, measured dynamic responses were
presented to document the dynamic response for systems design, and ana-
lytical means of prediction of the dynamic response were developed. Com-
parison of the measured and predicted responses will now be presented to
show how well the anelysis represents the measured frequency response
characteristics of the esirplene (i.e., which forms of transfer functions
are needed to simulate the dynamic response in systems design) and how
well the node lines or points of low response can be predicted by analysis
or ground vibration tests.

Frequency Response Curves and Related
Transfer Function Forms

Near the short-period frequency.- If the response is only needed at
frequencies near the alrplane short-period mode frequency, then the
pseudostatic method should provide adequate predictions. In order to
verify this, measured responses of wing tip deflection at several alti-
tudes are compared with the predicted response in figure 13. Wing tip
deflection is used here for comparison because it is the most direct and
accurate measurement of aeroelastic effects on the sirplane. From equa-
tion (6), solutions of y end 1 are combined in accordance with equa-
tion (C33) in Appendix C to form the transfer function for wing tip
deflection which has the form
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2
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where the numerlcal values for ¢ and wyn are determined from the equations
of motion for a given flight condition. The subscripts 1, 2, . . . are
used to indlcate that the { and wp, are different in the second-order .
transfer function terms. -

The forms of transfer functions of other gquantities é/S, n/s are
the same as for a rigld airplane and are glven in reference 4, Solutions
in the form of equation (8) were obtalned for flight conditions at a Mach
number of 0.7 and altitudes of 35,000 and 15,000 feet for the airplsne
weight configuration. These were then plotted in frequency response form
through use of dynamic response templetes presented in reference 11. The .
frequency response function may also be obtained by substituting iw for D
in equation (8).

The agreement between experiment and the pseudostatic predictions is
quite good up to & frequency of k4 radians per second. At higher frequen-
cles, the response rises sharply in a dynamic peak due to the wing first-
bending mode which is especially noticesble &t the higher altitude .
of 35,000 feet.

Including the short-period and wing flrst-bending freguencies.- In
order to take account of the dynamic effects of the lowest structural
mode the wing first-bending mode needs to be included as a dynamic degree
of freedom in the equations of motion. This is done by only neglecting
the D® end D terms associated with h and 7 in equation (2). The
trensfer function for z/8 then takes on the form:

K<; + Eg-D + ;EL-Dé)
z “n wpZ 1
2. (9)

(; + EE D+ -gk-Dé> <i + EE D + L D%)
n wy® 2 “n wn® 4

Responses predicted by this method are also shown in figure 13, and
i1t may be seen that the dynamic response pesks agree well with the experi-
mentel ones. The deflection check, as described in Appendix C, indicated
that the selection of coordinates was excellent for describling the strue- -
tural deflections in this frequency renge (up to 15 radians per second).



NACA TN 4ih7 13

An interesting result In figure 13 1s the disappearance of the large
dynamic response pesk of the wing filrst-bending mode at an altitude of
15,000 feet. When the alrplene undergoes forced oscillation, there is s
frequency for which the generalized forces of inertial loads and aerody-
namic loads nearly cancel. This frequency is marked by the valley in the
frequency response which occurs around 5 radians per second at an altltude
of 35,000 feet. At 15,000 feet, this condition occurs at nearly the same
frequency as the wing first-bending mode frequency end hence 1ittle or no
driving force is transmitted to the wing and the dynamlc response peek
remains small.

The forms of other transfer functions for dynamic ¥y and pseudostatic
h and 1 are:

2¢ 1 2)
. K3 T2 1+ == —_—
5 (; + 9?> + o D+ pro D A
2 - (10)

<1+2—§D+-1—D2)<1+§D+LD2>
“n o wp® o p\ En o wp®

and

2 1 2t 1
K <; + —S-D + ———-D%) (i + D+ -——-Dé)
Deg i “n wn® 1 “n wn® 3

(11)
o 2¢ 1 .2 2¢ 12
G-+(’~‘D.D+ﬁh2D>2<l+mnD+wn2 >4

Including the short-period, wing first-bending, and fuselage first-
bending frequencies.- The predicted response msy be extended to cover a
wider range of frequenciees by including another dynamic degree of freedom.
In selecting additional degrees of freedom, consideration must be given to
the importance of the modes on the over-sll response. In looking at the
free-free modes in figure 11, it may be seen that the first subdominant
mode conslsts primerily of deflection of the inboard nacelle mass whereas
the second subdominant mode consists primarily of deflection of the taill
mass. Fuselage bending was selected as the next most importent degree of
freedom because 1t would be expected to have the largest influence on
local fuselage responses.

Because of the small deflections involved at the higher frequencies,
structural deflection measurements, particularly of the fuselage, were
not of sufficlent accuracy to use for comparison with theory. However, the
accelerometer measurements were of sufficlent accuracy over the entlre
frequency range of interest, and hence will be used for comparison here.
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Equation (2) was solved for 8, Zqg, ¥, and h with the torsion-mode

variable 1 neglected. Acceleration responses at the nose, center of
gravity, wing tip, and tail were obtalned through use of equation (3) and
are plotted in figure 14. The form of these adceleration responses is

5 ) K( ) 1+ == 2§ Dé) 1+ wn D + == Dé) <; == D + ———-D%)

—
14+ gﬁ-n + —--D:) (i 28 p, -—-Dj) (i + ——-D + -i- D‘>

(12)

and the form of pitching velocity at the center_of gravity 1s

1 2L 1 2
Kz <i + T 9)(? + ——-D + D%) <i + =2 D + ———-D‘>
6 9 2 1 (dn_ %2 3
( 2% 5, L De)(“%m_l_ne)(“%sm_é_na)
Wn PCRA Wn . owp® "/, Wn w2 Jg

Compareble measured acceleration responses are shown in figure 15.
The portion of the measured wing-tip response has been deleted between
frequenciles - of 12 and 25 radians per second beceuse the scatter in this
region obscures the other response curves. It may be seen that the pat-
tern of predicted (fig. 14t) and measured responses (fig. 15) are very
similar in both amplitude and phase angle which indicates that the equa-
tions are of the correct form. Hence, transfer functions of the form of
equations (12) and (13) should be adequate for simulation of the dynamic
response over this frequency range.

(13)

o .
5

A closer comparison of the responses can be obtained by plotting the
accelerations at peaks of the various modes on an amplitude-phase plane.
Discussion of the results at the wing first-bending mode and the fuselage
first-bending mode peaks follows. When values are compared, it should be
kept in mind that errors should be evaluated on the baslis of absolute
differences rather than percentages because amplitude ratios which are
small and phase angles at polnts with a steep slope are difficult to
measure accurately.

The amplitude and phase angle of the various accelerations at the
wing first-bending mode frequency are plotted in figure 16. The agree-
ment between measured and predicted values is considered to be good. The
deflection check of Appendix C ig shown in figure 17. The deflections
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in phase with the wing +ip are plotted In bending and streamwise twist
components for comparison. The close agreement indicates that the degrees
of freedom were adequate to describe the mode shape.

Comparison of the peek amplitudes at the fuselage first-bending mode
frequency near 30 radlans per second in figures 14 and 15 shows a large
difference between measured and predicted values. However, in both cases
the damping ratio is very low and the height of this pesk is extremely
sensitive to small changes in damping ratio. Physlcally this means that
the exact values of the peak are dependent on very small forces which are
beyond the accuracy of the analysis. It is quite possible that better
agreement would be obtained 1f structural damping and wmsteady 1ift forces
were included in the ansalysis. However, since the structural and mass
characteristics of the fuselage are not known accurately (see Appendix B),
it is felt that further refinements would be futile unless structural
properties of the fuselage were measured.

In order to compare the modes of deformastion, the accelerations at
the fuselage first-bending mode frequency were normalized to the tail
acceleration and are plotted in figure 18. It may be seen that there are
phase-angle differences between measured and predicted values as high
as 45° and that the relative wing-tip amplitude measured is much larger
than predicted. Hence, the coordinates of wing first bending and fuselage
first bending are not adequate to define the motion with precision at the
peak frequency, but are close enough to give the correct general form of
the frequency response over the entire range under consideration. For an
analog simulation, the damping of the fuselage first-bending mode would
have to be increased to match flight values.

The deflection check of Appendix C is plotted in figure 19. Here,
the deflections in phase with tall deflection are plotted in wing bending
and streamwise twlst components. It may be seen that the applied loads
in this condition cause much higher wing~tip deflections and more wing
torsion then is predicted with simple wing first bending and fuselage
first bending. A solution of the complete equations with dynamic ¥y, h,
and 7 was also made and the results indicated that the correct amount of
torsion was obtained, but that wing-tip deflection was still too small.
As seen in figure 17, the experimental values also indicate higher wing
deflections than predicted by the simple wing-bending analysis. A wing
first-bending type curve with more curvature near the root could be used
in place of the wing first-bending curve used in the analysis, but this
would compromise the results in the low-frequency range. If a wing first-
bending curve with more curvature near the root were included as an addi-
tional degree of freedom, then the equations would probably be 11l1-
conditioned. Hence, it appears that a wing second-bending degree of
freedom would have to be added to predict the wlng deflections accurately
over the frequency range considered here.
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Node Lines and Iines of Low Response

In many spplications the adverse effects of a structural mode can be
eliminated by locating control system elements on node lines, that is,
points of zero displacement. Also the stabllity of a system or the effec-
tiveness of a mass balance welght often depends on which side of the node
line the pickup or mass is located. The existence of node lines requires
that all points on the structure vibraete either in phase or 180° out of
rhase., This condition is satisfled In the free-free analysis and approxi-
mately in ground vibratlion tests.

Wing first-bending mode.- It may be seen in figure 16 that the nose,
center of gravity, wing tip, and tall accelerations do not fall on a
stralght line through the origin, but are close enough to determine points
of low response in flight. Through the use of the assumed fuselage mode
of deformation, parabolic bending to the rear of the center of gravity,
points of low response on the fuselage were calculated for the messured
and predicted values in Pigure 16 and are shown in figure 20 togethexr
with node lines from ground vibration tests and from the free-free analysis.

The fuselage node lines or lines of low response from flight, free-
free analysis, and dynamical analysis are in approximate agreement, but
the ground vibration values obtained from reference 9 are considersbly
farther to the rear. Hence, support of the airplane on air bags is not
representative of the menner in which the airplane is supported in flight
at this frequency. A possible means of supporting the airplane on the
ground to simulate coupling effects of the short-period flight mode is
suggested by the moment of inertia tests described in reference 10. The
spring and knife edges support the sirplane in a manner which very nearly
corresponds to the mechanics of the short-period mode at frequencles near
the wing first-bending mode frequency. As a result, the oscillations of
the alrplene on the moment-~of-inertia rig correspond very nearly to those
which occur in flight, except for the phase lag of the wing vwhich results
from aerodynamic damping forces in flight.

Tuselage first-bending mode.- From figure 18 it may be seen that the
predicted accelerstlons at the nose, center of gravity, and teil fall
nearly in a straight line, and since nose and tail values are 180° out of
phase with the center of gravity, two node lines exist on the fuselage.
The experimental points do not fall on a straight line, but are close
enough to locate points of low response. The node lines are shown in
figure 21 and it may be seen that they are in approximate agreement.

It should be noted that the forwerd f£light node line is somewhet
farther forward than the others. In the evaluvation of f£flight node lines
it was found that considerable nose bending was teking place. As seen in
figure 18, the phase of the nose acceleration 1s shifted toward that of
the wing tlp which indicates that nose bending would have to be treated
as & separabe degree of freedom to duplicate the motion accurately.
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CONCLUSIONS

The evaluation of the dynamic response of a large flexible airplane
to elevator pulses over & wilide range of flight conditions including Mach
numbers of 0.5 to 0.8 and altitudes of 15,000 to 35,000 feet and compari-
sons with predicted dynamic response at selected locations have led to the
following conclusions:

1l. For practicsl purposes the dynamic response of & flexible airplane
is invariant with the seroelastic parameter q/B.

2. At constant Mach number, the dynamic response peak of the wing
first-bending mode tends to increase in amplitude as altitude is increased.

3. Dynamlcal analysis with one structural degree of freedom (wlng
first bending) and steady-state aerodynamic theory adequately predicts
the response through the frequency of the wing first-bending mode.

4. Dynamicel snalysis with two structural degrees of freedom (wing
first bending and fuselage first bending) and with steady-state aserody-
namic theory gives a form of frequency response which spproximately cor-
responds with measured frequency responses through the frequency of the
fuselage first-bending mode.

5. Dynamical analysis with three structural degrees of freedom (wing
first bending, wing first torsion, and fuselage first bending) gives better
predictions of the wing distortion than the analysis with two structural
degrees of freedom, but components of wing second bending and fuselage nose
bending will have to be taken Iinto account to obtain more accurate predic-
tions of the response at frequencies above the wing first-bending mode
frequency.

6. Lines of small response of the wing first-bending mode and the
fuselage first-bending mode measured in flight show fair correlation with
those predicted by dynamical analysis.

T. Node lines measured in ground vibraetion tests with the particular
glrplane support used did not agree with the lines of small response
measured in flight.

Ames Aeronauticael Laeborstory
National Advisory Commlttee for Aeronsutics
Moffett Field, Callf., Oct. T, 1957
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APPENDIX A
LIST OF SYMBOLS

1ift coefficlent
welghted 1ift coefficient at station 1

pltching-moment coefficient

differential operator, é%

applied force at station J, positive downward

longitudinal moment of inertia, slug-fta
galn of subscript quantity
total mass of airplane, slugs, or Mach number

wing area, sq ft

pitching veloclity time comstant, sec

velocity, ft/sec

alrplane gross welght, 1b

NACA TN L4147

vertical displacement of subscript statlon relatlve to space

reference plane, positive downward, f%

normallzed coordinate of first structural mode

aerodynamic influence coefficlent, welghted 1ift coefficient
at statlon i due to a wnit angle of attack at station

wing span, £t

normelized coordinate of secénd structural mode

structural influence coefficlent, deflection at station i,

relative to reference plane, due to load at station J, ft
(Because of symmetry, stiffness of both wings is included.

{lb
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c wing chord, £t

Cs normalized coordinate of third structural mode

Q)

b/2
wing mean serodynamic chord, M.A.C., %f c2dy
e}

C.g. center of gravity, percent <€

acceleration due to gravity, 32.2 f£t/sec®

h deflectlon coordinate of second structural mode relative to
reference plane, positive downward, £t

1 deflection coordinate of thlrd structural mode relative to
reference plane, positive downward, £t

m( ) mass at subscript station, slugs
(Because of symmetry, mass of both wings at each wing station
is used.)

n( ) normal acceleration at subscript stetion, positive downward,

gravity units

q dynemic pressure, lb/sq ft

x( longitudinal distance from center of gravity to subscript
) quantlity, positive when center of gravity is forward of
subscript quantity location, £t

Y deflection coordinate of first structursl mode relative to
reference plane, positive downward, ft

z . total deflection of subscript station relative to reference

() plane, positive downward, £t

o angle of attack, radlans

B ratio of riglid wing lift-curve slope at M = 0 to the rigid
wing slope at M, (B = VFE_:7E5§§§§§)

5] elevator control deflection, positive downward, radians

4 damping ratio, dimenslonless

1 spanwlse coordinate, fraction of wing semispan

e pitch angle at center of gravity, radlans
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A angle of sweepback
o mass density of air, slugs/cu £t
o) phase angle of output quantlity minus phase angle of input
<éE§EE%> quantity

input
w frequency, radians/sec
Wpe undamped natural frequency of subscript free-free mode,

() radians/sec
wn undamped natural frequency of subscript pseudocentilever mode

() used as coordinate, radiens/sec

Subscripts
a first structural mode
b second structural mode
c third structural mode
cg center of gravity
n nose
t tail
wt wing tip
Dots are used to Indicate differentietlion with respect to time; for
dz _

example = EE . -

i)
B

MATRICES

columm metrix

square matrix
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~C.
square mabtrix with all except diagonal elements egual to zero
row matrix
e
-
‘: transposed matrix
{l} colum matrix with all elements equasl to unity
T
I_J unit matrix
r 1-1
Inverse matrix
-
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APPENDIX B .
CALCULATION OF FREE~-FREE MODES

When an airplane vibrates at structural mode frequencies in flight,
the aerodynamic and structural dampling forces are ordinarily small com-
pered to the lnertial forces. For this reason, it might be expected that
the modes in flight would not differ greatly from those of the airplane
suspended in a vacuum (the free-free modes). Hence, & knowledge of the
free-free modes is valuable in selecting degrees of freedom in the
equations of motion.

Equations for free-free modes are also derived in reference 12, but
the form obtained here is & particularly useful form. In figure 9, the
vertical poslition of the ith discrete mass is given by:

Zy = Zog + 6%y + 23 N (Bl)

where the center of gravlty is teken as the reference point and small
angles are assumed (6 = sin 8).

If it is assumed that the airplane is vibrating sinusoldally in a
natural free mode, the force due to inertia of the jth discrete mass is:

Fj = Lofaij_j (Bz)

Then, at an instant of time in accordence with D'Alembert's principle,
the system must be in a state of equilibrium as expressed by the following
equations: The sum of vertlcel forces must be equal to zero,

n

E:mjzj + MogZog + Mo (ZegtoXa) = O (B3)

J=1

and the sum of moments must be equal to zero,
n .
ijzjxj + Mg (Zgt0%g)Xg = O (BL4)
J=1 '

where moments are taken about the center of gravity and the masses Meg
and my are introduced to teke account of mass at the center of gravity
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and any rigldly attached mass mg. The masses Do g and m; are separated
from ij. . » for convenience. In the example alrplene, the influence
coefficients of the nose of the sirplane were not known. Hence the part

of the fuselage forward of the center of gravity was assumed to be rigid.
The masses meg and m; are selected to satisfy mass and moment of inertla

of the airplane as follows:

n

M =Zm'j + Mo + Og (B5)
J=1
n

Iy =ijxja + myx,? (B6)
J=a1
n
ijxj + mpX, =0 (BT)
J=1

The deflection of the system of masses is given by the structural
influence coefficlent matrix which was obtalned from load-deflection
measurements of the wing (ref. 13) and an estimate of fuselage stiffness
which was made from the results of the ground vibration tests (ref. 9)
and the known mass distribution of the fuselage;

SRS

vhere i,J =1,2,...,n

The structural deflections in the free-free mode are obtained by
substituting the applied forces from equation (B2) into equation (B8)

f il

Using equations (Bl) and (B9}, one obtains:

R0 R R 9 |
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If equation (B1O) is premultiplied by {miJ and combined with
equations (B3), (B5), and (BT), the following equation may be obtained

e o)

Also, if equation (B1lO) is premultiplied by l-mixiJ and combined with

equations (B4), (B6), and (B7), the following equation mey be obtained

2

L [

Substitubting equations (Bll) and (B12) into equation (B1O), one
obtains

fu - oo g e [ ] £ o

which 1s the equation desired. The modal columms { and natural fre-
quencies wy &are the free~free modes of the airplane when {Zi} {Zj}
This result may be achleved by iteration. When {Zi} is known, then the
position of the reference plane through the original center of gravity

mey be determined from equations (B3) through (B7) with the following
result:

Wo gXa,

Zog = (BLh)

mavaijj - (mcg + ma)ijZ'jxj
L

e = (B15)

vhere Jj = 1,2,...,n.
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APFENDIX C
DERIVATION OF EQUATTONS OF MOTION

The equations of motion of & flexible airplane in forced osclllations
gbout an equilibrium condition may be formulated through use of Lagrange's
equation:

at <;qi qu =% _ (c1)

The airplane is assumed to be flylng at constant veloclty, and all
motions about this state of equilibrium are assumed to be small. In order
to celculate the kinetie and potential energles in equation (Cl), the mass
distribution and elastic properties of the alrplane must be known., It is
assumed that these properties are known in the form of discrete masses and
structural influence coefflclents.

The generalized forces (Qi) in the case of an airplane are the aero-

dynamic forces arising from motions about equilibrium. The forces due to
gravity, initlial angle of attack, and initial structural deflection do not
enter into the problem because they are in equilibrium and hence do no
work., The generalized coordinates %4 represent the degrees of freedom

of the dynamlc system. In a specific application, the minimum number of
coordinates which adequately describe the motion are selected. In this
enalysis, it is assumed that the motion of the flexible airplane can be
described by the usual rigld airplane degrees of freedom, and three struc-
tural degrees of freedom measured in the axds system of figure 9. Any

arbitrary deflection of the structure {%i from the equilibrium position

- e oo

where {%1}3 {%;}3 and.{;i}-are the normalized deflections at the mass
stations of the three structursl modes, y, h, and 1, respectively.

ls gliven by:

In accordance with the coordinate system in figure 9, 1f the small
angle assumption 6 = sin 6 1s made, the vertical velocity of a discrete
massg, my, is:

2y = ch + %6 + a;F + byh + oyl (c3)
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Expression for Airplane Inertial Forces in

Terms of Coordinates

The kinetic energy of the system of discrete masses ebout the

equilibrium position is:

l . . -
= -é-z ) chcg + 3 ma(ch + xi_;‘e)2

(ck)

where the masses mpgy and my have been introduced to satisfy equatlons

(B5), (B6), and (BT).

Using equations (C3) and (CL) and teking the partial derivatives of
KE with respect to coordinate veloclties, and alsc the time derivatlve, *

one may obtain

r BK.E/ aZc g B M 0 Zmiaq Zmiby
XE / Y} 0 Iy- . ImgaqXy  ZmybiXsg
a .
Fr < XKE/dy = | Zmyay Imyasxy  Imyaq®  Emjagbg
KE/3h Pmgb;  Zmybyxy  Emgegby  Emgby®
XE/31 Zmycy  ImyeqXy  Imgagcy  Imybieg

Expression for Airplane Spring Forces

Zmyey ]
Zmy c X4
Zmjaqcy
Zmsbyeq

Z‘.micia

The potential energy of the deflected ailrplsne is given by:

=t o ous ] {i}
medfful B

which becomes .

(c6)

(c7
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for the particular deflection in coordinate y. Taking the partial
derivative with respect to ¥y, one obtains:

e RS @

Since potential energy as used herein must depend only on relative
displacements within an uncoupled mode, equation (C8) can be written in
terms of the undamped natural frequency of a particular degree of freedom.
From equations (Cl), (C5), and (C8)}, the equation for free vibration in
the coordinate y i1s:

Smyay® ¥+ Laij[bij]—%{%%} y=0 (c9)

which has solutions y = A sin wngt. Solving for Wrg in equation (C9)
and combining with equation (C8), one obtains:

FE - ungZmmyas®y (c10)

oy

Similar expressions for potential energy may be found for the other
degrees of freedom.

Use of Free-Free Mode in Calculation of wﬂa.

The natural frequency wp, in equation (C10) may be calculated
-1
without resorting to [bij} if the structural degree of freedom {%?}-y
is obtained from the structural deformation of a free-free mode such as

described in Appendix B. In this case the potentlial energy of the free-
free mode 1is given by:

PE = % mf:[z:miziz ¥ MogZog + Dg(Zeg + xae)z] (c11)

vhere the Z;, Z.g, and 6 are solutions of the ath free-free mode. The
deflection sbout the deflection reference plane (fig. 9) is:
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b o o)

where y i1s the deflection given by y = ng"“ ch - est' If the

structure ls constrained to vibrate in the form-{%%} with the deflectlion

reference plane fixed in space, then the potential energy is:

1 2 2_2
PE = = tng Tmpag Yy (c13)
When equation (Cl2) is satisfied, the potential energy is the same whether
the alrplene 1s vibrating in the free-free mode or with the deflection

reference plane fixed. Equating (C1ll) and (C13) and solving for un,
glves: .

2 2 - 2
+ Wy Zog + ma(ch + X%0)

zmiaié‘y?

i (c1k)

This equation expresses the characteristlc difference in frequency of a
free-free and a cantilever mode. Ordinarily, the free-free vibration of
a given mode of deformation occéurs at e much higher frequency than the
centilever one. When the fuselage bending is used as a separate degree
of .freedom, then the potential energy of fuselage bending in the free-free
mode should be subtracted out of equation (Clh) as follows:

2PE
By %242 + megZog® + ma(Zeg + %a8)% - wff
a
& o Zmiaigyz

where FEp 1s the potentlael energy of the fuselage in the free-free mode
which satisfies equation (Cl2).
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Equations of Motion With Air Forces Unspecified

Using equations (Cl), (C5), and (ClO), one may obtain

[ vp2 0 Zm;ayD® Zmy by D2 Zmy ey D? ] Zeg)  [eg)

0 LyD? Zmy e x5 D7 Ty by 3y D° Zmg e x5 D% 9 %

Zwie;D® FmpesxgD® Empe;®(DHung®) Bmjeyb;D® Emgay esD? y =$ %

£mibsD® FmybyxyD? SmyasbiD? Zmyby®(D%4un, B)  ZmybscyDP h Qp

Zmge;0° smpes;yD® Emgayep® Emyby ey D? Zmg g *(D%hung®) | | 2 Q /
(c16)

Expression for Aerodynamic Forces

The generalized forces Qi in equatlon (Cl6) consist of the

aerodynamic forces. For convenlence in caleculation of these forces,

the angle-of-attack coordinate, a,(fig. 9) is introduced here, and later
in the report i1t is transformed to the coordinates of the preceding equa-
tions. The mass stations were originally selected to be compatible with
the aerodynamic 1lifts. From reference 14, which is a development from
Welssinger's steady-state lifting line theory, the aerodynamic influence
coefficients may be obtained as follows '

fo} - o] o} vm -2 @
Solving for {Gn} gives | _ “ | -
SRS I

The elements of {Gn} are the loading coefficients c-Lc/2b at

stations 1, 2, 3, and L, respectively, due to any arbitrary angle-of-
attack distribution. The total 1ift on the wing 1s gliven by:

1
L= baq_f G(n)an (c19)

(o}
where G(7n) is the function teking on the value of Gy &t the nth station.
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This integretion may be performed by Multhopp's quadrature method.
In matrix form, the integration is performed by premultiplying equa-
tion (C18) by & welghting matrix. Also, dividing by qgS to obtein a

coefficlent. form glves

poe—

0.1502

{Cln} - <%2‘> Z

L- 0]

o
0.2776
0

0]

0
o]
0.3628

o)

o)

0

0

0.196kL

(c20)

(2] =}

The column {%L%} is thus welghted so that a summation with deflection

coefficients glves a gquadrature solution of the integral of the product of

the spanwise 1ift function and the deflection function.

Also the summation

of the elements of {éLn glves the 11ft coefficient of the wing due to the

angle-of-attack dlstribution {%{} .

In order to teke account of chordwise loadings, the 1lift was divided
into two components at each spanwise station, one component at% the front

spar and one at the rear spar.
place the chordwlse center of pressure at the 25-percent chord line.

These were selected in such a manner as to

This

puts 80 percent of the 1lift on the front spar and 20 percent on the rear

spar.

Equation (C20) mey then be written as

{oraf = [ ea)

Cu
!

= 1,2,3,k

= 1¥,1R,2F,2R,3F,3R,4F, 4R

(ca1)
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vhere

(0.8 0 o0 O]

2 0 0 O

o 0.8 o olfo.is02 o 0 o |

P2 0 .2 0 0 0 0.2776 0 0 -1

[aij:] B CST) o o 0.8 o} o 0  0.3628 © [am]

0 0 2 0} 0 0 0 o.196l_p_

0O 0 0 0.8

| 0o 0o o .2

which is the aerodynamlc influence coefficient matrix in a form sultable
for calculation of generalized forces. Mach number effects in accordance
with the Prandtl-Glauert rule are lncluded in the values of aypn from
reference 1h4. This means that an aerodynamic influence coefficient matrix
should be calculated for each Mach number. However, in many cases, Mach

number effects may be adequately taken into account by multiplying [aijJ
for a Mach number of zero by 1/B.

The moment coefflcients are given by:

faf-2 )

A generalized force is the work done per wmit displacement when the
system undergoes a virtual dlsplacement of one of the degrees of freedom.
In the following equatlons for generalized forces, small sngles are assumed
80 that 1ift forces can be regarded as scting in the direction of the dls-
placements, In & displacement of the ch coordinate, all of the 1ift
forces do work. Hence:

(ca2)

Qch = ‘[(CI&DFCIu)@+ CLéé + (CL&D“'CLy)y'*' (CLELD"‘CLh)h + (cLiMLZ)7' * CLSBJQS

(c23)
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vhere the terms Crs, Cr,» CL@: Crg are the rigid alrplane derivabives.
The terms CLSr’ CLy: CLE’ cLh’ cLi P CLZ were obtained by summing {CL:L} in

equation (C21) where “v}' is the angle of attack at control points due to

displacements {Fi}y {%i}y and.{%%}, respectively. _

In & 6 displecement, work is done by all of the moments. Hence:

Qg = [(cm&mcmm)m + CmyDe + (cm&mcmy)y + (CoypD+Ciny, )1 + (Cpn3D+Cryy ) T cmaa]qsa

(c2k) )
where Cm&: Cma’ Cmé, Cm8 are rigld alrplane derivatives and the terms
Cm?, Cmy, Cmﬁ, th, Cmi’ sz are obtained by summing {?m%}-in equa-

tion (C22), using the appropriate respective+§ngles of attack {%{} as
noted above,

-

In a displacement of the mode Yy, work is done by all of the forces
which are displaced, For example, the work per wnit of y done by the .
1ift duve to o dis glven by S~

1
% = qu cy(n)a(n)dy (ca25)

[¢]

where Cy(n) and a(n) are the dlstributed functions of lift coefficient

and mode of deformation. This integral 1s similar to the one in equa- -
tion (C19) and is also amenable to golution by Multhopp's guadrature

method. Since the integrating factors are included in the aerodynemic

influence coefficlent matrix, then the work done by 1lift due to o is

gl @bl

or

3r
Aw -
ae qSZ o &g (ca6)

i=1f
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The generalized force is

oy = 8| Bong o Jafoone ) oo 00 ) {a0ng o) o0y ) v
(2%51&1) B (mlhiaa B +<chiiai> : +G:CLliai> : (mLSiaO 5] (c21)

and similerly for the other generalized forces

o = o) e ) s ) G
(Z‘.CLﬁibj)]'n (ZCLhibj_)h +(ZCLiibi> i+G:cLlibi> 1 +G:cLaibi> 5] (c28)

e R R L oY R C S
CRATCNNCHR IR N CIE

Again using the small angle assumption, one may relate the vertlical
acceleration to 6 and o by the following transformstion of coordinates.

%= V(6 - &) (c30)

Equations (C16), (c23), (c24), (c27), (c28), (C29), and (C30) now
define the equations of motion. Further development depends on the exact
form in which the equations are desired.

Final Equations of Motion in Terms of Specific Coordinates

In the application to the B-4T alrplane, the three structural degrees
of freedom selected were wing bending (y), wing torsion (1), =nd fuselage
bending (h). The wing bending mode was obtained by removing the fuselage-



bending compenent from the flrst free-free mode. The torsiom mode was obtalned by removing the

fuselage- snd wing-bending components from the second free-free mode.

Hence, terms ZXZmibscy and

Imja4by Ydecome zero. Also, the terms C]-_di and cL&i’ which repregent forcee at the teil, do not

enter Into equatiomns in y and 1.
was found to be small and was neglected,

Downwash at the tall from the Lift due to wing structural modes

KiMD%s 0 K;EmyayD%4 Ka2myby PP KiZmgci D%
iv"'i- i +Ev"f— D (clﬁﬁé)mclu C1Pony CrPry CuyPly,
g ne KeTytF- K Zmyayx 0 KaZayoyxy 0%~ KeZmy eq%0°-
g3 o 3 (Cug+Omy )D-Crv, | CgP-Cin, g D~y CmgD-Cr,
KyEmsag P+ Kafmeyxi D% | KyBmgas#(0Run 2)+ KaFmgageq D
2 . : °
mr.;_,r,_l 5 Eclu.i"i"mlgi‘in zcl'yiainm‘:ia‘- I, &DHECL, 2
KBy by D%+ K, Zmg by xy D2 KiEmgby® (D2+unb2)+
Z0p, biD+
et Pyt ° byDiZCry by °
DRy T, 250 B 16y hy
KiZm; e, 0%+ KyZmy o3 D%+ KyEmy ey cs0%% K Bmgeq® (D2+wnca)+
oq - e4D | ZCp,. oy Di+EC o >4 D4+EC
ml,:;1 . Fong, 0147009, 1 Ly, S Ly O Ly, *1P+ECr o1

Zeg)

e

Equations of mptlon used in the analysls are:

“Crg

}={0 »8 (C31)
<Ly
Lo |

w
=

LuTh NI VOVH
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vhere 1/qS =K, 1/qS€ = Ko and all summations, %, are taeken over stations
1F¥, 1R, 2F, 2R, 3F, 3R, 5, 6, and 7. The wing root stations, 4F and LR,
do not deflect in coordinates y, h, and 1 and, hence do not enter into
the summations, but the 1ift at these stations is included in stability
dexrivatives such as CLy, CLh, ete.

The acceleration at any point 1 on the alrplene is given by:

n; = %; [ch + %40 + 84 + bsh + ciz] (c32)

Deflection check.~ Because of the many terms involved, it is advisable
to check the results obtained from the equations of motion. This can be
done as follows: From solution of equation (C31), calculate the wing
deflection for a particular frequency (make substitution D = iw). Usually
a8 frequency corresponding to & pesk in the frequency response is used
because these are the most important points. The deflection is given by

o+

Through use of the structural and aerodynemic influence coefficlent

matrices, calculate deflections due to «, 8, &, Deg, {%1}3 {%i}y {%i}3

and sum. The total deflections due to the loads should check with the
initial deflection in equation (C33). Since the influence coefficient
matrices are based on eight degrees of freedom, the deflectlion check indi-~
cates whether or not the three degrees of freedom selected are as adequate
as eight degrees of freedom at the frequency considered.
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TABLE I.- FLIGHT-TEST CONDITIONS

Flight | Rum . Mach Gross 8 1
number | number Altitude number | welght IyX1O c.8g. B
18 6 14,900 0.50 }103,400 | 1.23 }22.8]0.91
18 7 15,000 .55 }103,100 | 1.23 |22.8} .88
18 8 15,100 .59 102,700 | 1.23 |22.7| .86
18 10 " | 15,100 .67 }101,600 | 1.21 |21.9| .82
18 11 15,100 .7L | 100,700 | L.21 |21.9| .80
18 12 _| 15,200 .76 100,300 | 1.21 |22.2| .76
11 19 20,000 .59 106,100 | 1L.25 |21.2| .86
17 15 20,500 .71 | 204,200 | .24 }20.9] .80
15 T 25,500 49 | 118,700 { 1.36 [20.8| .91
15° 5 25,200 .60 |119,500 | 1.37 {2k.2| .86
15 4 25,100 .66 120,000 | 1.37 {21.1| .83
17 10 24,800 .70 | 108,100 | 1.27 |19.9} .80
17 12 25,380 .79 |wW6,hk00 | 1.25 |19.6| .74
3 6 29,900 LT 125,900 | 1.25 [20.6| .80
5 18 34,400 .60 110,000 | 1.29 !21.3| .86
5 15 36,000 .72 | 111,100 | 1.30 |21.6| .79
5 13 35,300 .80 |111,900 | 1.30 {21.7} .T4

1
Based on C o] from reference 1k.
Ty o/ Oy
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TABIE IT.- PHYSICAL CHARACTERISTICS USED IN ANALYSIS
18.4 8.9 3.1 1.87
k.6 2.2 .8 b
3.12 548 2h. k4 L4
_ .78 13.7 6.1 1.1
Myl @m.3 | -6 6.8 96 29
.24 1.7 2k T
A .62 12,8 54
1 .15 3.2 13.4
cIu"ba:Ll = 3.3
1F 1R oF 2R 3F 3R 5 6 7
2.3486 | 2.3840 | 1.1943 | 1.2934 { 0.2302 | 0.2730 | 0.1717 | 1.6315 | O
2.4508 | 2.5920 | 1.2430 | 1.4057 | .2330 | .29k0 | .3bo7|1.6970 |0
1.213% | 1.2490 | 819! .T795}1 .1769| .2051L| .1383 | .9263 |0
1 1.3309 [ 1.%300 | .7881 | .9005 | .180k | .2318 | .1102| .9916 |0
[‘bij] = 5000 Lt | L2307| L1765 (1663 ] L0659 | .0580 | .o7671 .2040 O
’ .3057| .3339 | .2116 | .2398 | .0705| .0931 0396 | .2h46k [0
1614 | .0898 1 .1286 | .0659 | .0506| .0101 | .1273 | .1hkk|O
1.6137|21.6498 | .9208 | 9495 | .2025| .237h | .1528 |1.1859 |0
0 o] 0 o} 0 o} 0 o} 0.328
f_mi_’ = |20 20 61 6L 130 130 Lgh 206 264 |
[xi_'= 19.82 23.12 10.86 15.06 -2.53 2.98 -10.08 1k.22 h'rJ
ai_l= 0.953 1 6.576 0.623 0.1k 0.17h: 0.096 0©0.718 ©
L L o
by J = 0 0 ) 0 o 0 o 1 J
ciJ -.32  0.316 -0.316 0.267 -0.267 1 0.32 0

=10.32

Change in stebilizer angle = 0.0342° per 1000 1b +eil load

Iy = 1,330,000 slug-£t®
M = 3,580 slugs

m, = 274 slugs

my = 1,930 slugs

Xg = 47.3 feet
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Figure 1.- Photograph of the test alrplane.
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Figure 2.- Two~view drawing of test alrplane.
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\ - and run number (ie. 5-I3
5-15 :
\O 5-l§ denotes flight 5, runl3)
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Figure 3.~ Flight test conditlons; 126,000 > W > 100,000 and center of

gravity between 20 and 23 percent M.A.C.
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Figure L.- Frequency response at an altitude of 15,000 feet.
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Figure 6.- Frequency response at an altitude of 35,000 feet.
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(b) Acceleration at center of gravity.
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Figure 20.~ Predicted and measured node lines and lines of low response
of wing first-bending mode.
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Flgure 21.- Predicted and measured node lines and lines of low response
of fuselage flrst-~-bending mode.
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